Visibility of the Shafarevich–Tate Group at Higher Level

نویسندگان

  • Dimitar P. Jetchev
  • William A. Stein
  • Stephen Lichtenbaum
چکیده

We study visibility of Shafarevich–Tate groups of modular abelian varieties in Jacobians of modular curves of higher level. We prove a theorem about the existence of visible elements at a specific higher level under certain hypothesis which can be verified explicitly. We also provide a table of examples of visible subgroups at higher level and state a conjecture inspired by our data. 2000 Mathematics Subject Classification: 11G05, 11G10, 11G18, 11Y40

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visible Elements of the Shafarevich-tate Group

We study a subgroup of the Shafarevich-Tate group of an abelian variety known as the visible subgroup. We explain the geometric intuition behind this subgroup, prove its finiteness and describe several techniques for exhibiting visible elements. Two important results are proved one what we call the visualization theorem, which asserts that every element of the Shafarevich-Tate group of an abeli...

متن کامل

Constructing Elements in Shafarevich-tate Groups of Modular Motives

We study Shafarevich-Tate groups of motives attached to modular forms on Γ0(N) of weight bigger than 2. We deduce a criterion for the existence of nontrivial elements of these Shafarevich-Tate groups, and give 16 examples in which a strong form of the Beilinson-Bloch conjecture implies the existence of such elements. We also use modular symbols and observations about Tamagawa numbers to compute...

متن کامل

Visibility of Ideal Classes

Cremona, Mazur, and others have studied what they call visibility of elements of Shafarevich-Tate groups of elliptic curves. The analogue for an abelian number field K is capitulation of ideal classes of K in the minimal cyclotomic field containing K. We develop a new method to study capitulation and use it and classical methods to compute data with the hope of gaining insight into the elliptic...

متن کامل

The Birch and Swinnerton-Dyer conjectural formula and visibility Project description

A fundamental problem of number theory is: given a set of polynomial equations with rational coefficients, find all of its rational solutions and investigate their structure. In many cases, the Birch and Swinnerton-Dyer conjecture (henceforth abbreviated BSD conjecture) predicts the existence of such solutions and describes some of their structure without actually finding the solutions. The imp...

متن کامل

Visibility of Mordell-Weil Groups

We introduce a notion of visibility for Mordell-Weil groups, make a conjecture about visibility, and support it with theoretical evidence and data. These results shed new light on relations between Mordell-Weil and Shafarevich-Tate groups. 11G05, 11G10, 11G18, 11Y40

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007